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Abstract

We describe a new problem size, called Class D, for the NAS Paral-

lel Benchmarks (NPB), whose MPI source code implementation is being
released as NPB 2.4. A brief rationale is given for how the new class is
derived. We also describe the modifications made to the MPI implemen-
tation to allow the new class to be run on systems with 32-bit integers,

and with moderate amounts of memory. Finally, we give the verification

values for the new problem size.

1 Introduction

The most recent version of the NAS Parallel Benchmarks [1, 2], which intro-

duced a set of problems collectively called Class C, was released in 1996. Since

then, high-performance computer systems have grown significantly in size and

capabilities. Cache and memory sizes have increased, clock rates have gone up,

compiler technology has improved, network bandwidths have increased, total

numbers of processors have gone up, wide-area computations involving multiple

large systems (a.k.a. grid computing) has become in vogue. Consequently, the

need has arisen to specify more challenging benchmark sizes to rate the perfor-

mance of computer systems. The new problem suite described here, collectively

called Class D, aims to provide that challenge.

2 Rationale

We will not attempt to formulate a reasoning to justify a posteriori the various

problem sizes that were selected for the NAS Parallel Benchmarks. Little was
known at the time of these initial releases about what constitutes rational choices

for problem sizes. But we do now adopt a rationale for formulating new classes

that are to be run on available high-performance computing systems:

o A benchmark program of the largest problem size should, at the time of

its release, run in approximately the same amount of wall dock time on



availablesystemsasthepreviouslargestsizedidat thetimeofitsrelease.

o Theratioofdatasetsizeovercachesizeforabenchmarkprogramofthe
largestproblemsizeshould,at thetimeof its release,roughlyequalthat
ofthepreviouslargestsizeat thetimeof its release.

Whilethesearenotverysolidrules,theyprovideuswithsomedecentguide-
linesforscaleup.Disregardingtheverylargestsystemsin theworld,asranked
in thelistofthe500best-performingsystems[3]executingtheLINPACKbench-
mark,wedeterminedthathigh-performancecomputing systems have progressed

roughly as follows, relative to the time of the release of NPB Class C:

• system size (number of processors): factor of 2.5

• processor speed: factor of 20

• L2 cache size: factor of 10-30

However, these performance enhancements did not all occur within a single

system. For example, the systems occupying the fifth place on the top 500
list in november 1996 and november 2001 contained 3000 and 4000 processors,

respectively.
From this we derive the following basic scaleup rule: The data set of each

benchmark problem (save Embarrassingly Parallel EP, which does not operate

on a data set per se) is increased by a factor of 16 (this particular multiplication
factor supports those benchmarks that operate on data sets whose sizes must

be powers of two, i.e. Multi-Grid (MG), and Fast Fourier Transform (FT)), and

the number of iterations or time steps is increased by a factor of 1.25.

3 Problem parameters

When specifying the parameters of the benchmark problems, it is important to
ensure that numerical stability is preserved, but also that none of the bench-

marks converges to a steady state prematurely. Convergence means computa-

tions can be stopped without affecting correctness of the solution.

We next discuss the changes to the parameters of each individual benchmark

problem, including verification values. Any parameters not discussed remain

unchanged from the Class C NPB definition, including those required for any
initialization of field data.

3.1 Multigrid-MG

The size of the finest of the discretization grids is set to 10243 points, and the

number of V-cycles to be completed is set to 50. Within the accuracy specified

in [1], the norm of the final discrete solution, as defined also in [1], should equal
0.158327506043 * 10 -9.



3.2 Conjugate Gradient-CG

The number of rows in the sparse matrix is set to 1.5 * 106, the number of

nonzeroes per row is 21, the number of eigenvalue estimates to be computed

(number of outer iterations) is 100, and the eigenvalue shift term A is 500.
Within the accuracy specified in [1], the solution aggregated in the variable _,

as defined in [1], should equal 52.5145321058.

3.3 Fast Fourier Transform-FT

The size of the discretization grid is set to 2048 x 1024 x 1024 points, and the

number of time steps in the evolution of the double-precision complex solution
is set to 25. Since FT solutions can be evolved independently, we need to

supply verification values for each individually, consisting of the double-precision

complex checksum, as defined in [1]. Within the accuracy specified in [1], these
values are listed in Table 1.

3.4 Integer Sort-IS

We do not provide a specification of the Integer Sort benchmark for Class D.

3.5 Embarrassingly Parallel-EP

The Embarrassingly Parallel benchmark problem is the only one within NPB
in which the amount of work is not proportional to the data set size. Hence,

we simply increase the work by a factor of 16 over that of the Class C problem,

that is, we compute 236 pairs of random numbers.

In keeping with the NPB Message Passing Interface (MPI) implementation,

version 2.3, the only quantity that is checked in the verification test is the vector
10 X x-_lo Yk),whereXk andof aggregates of the random numbers, i.e. (_-]_k=1 k, Lk=l

]_ are as defined in [1]. Within the accuracy also specified in [1], the vector of

aggregates must equal (1.982481200946593 * 105, -1.020596636361769 * 105).

3.6 Block-Tridiagonal-BT

The size of the discretization grid is set to 408 x 408 x 408, and the number and

the size of the time steps to 250 and 2.0 * 10 -5, respectively. Verification values

for the residual and error norms, as computed according to [1], and within the

accuracy also specified in [1], are listed in Table 2.

3.7 Scalar-Pentadiagonal-SP

The size of the discretization grid is set to 408 × 408 x 408, and the number and

the size of the time steps to 500 and 3.0 * 10 -4, respectively. Verification values

for the residual and error norms, as computed according to [1], and within the

accuracy also specified in [1], are listed in Table 3.



3.8 Lower-Upper Symmetric Gauss-Seidel-LU

Thesizeof the discretizationgrid is setto 408×408x408,andthenumber
andthesizeof thetimestepsto 300and1.0,respectively.Verificationvalues
fortheresidualanderrornorms,ascomputedaccordingto [1],andwithinthe
accuracyalsospecifiedin [1],arelistedin Table4. Thevalueof thediscrete
surfaceintegral,againascomputedaccordingto [1]andwithin theaccuracy
specifiedin [1],is0.8334101392503.102.

4 FT Implementation details

The NPB, version 2.3, MPI implementation of FT had to be changed somewhat

to accommodate the larger data set size of Class D. The changes have largely to
do with the desire to be able to run the NPB on systems that do not support 64-

bit integers. Addressing very large arrays and defining large integer constants is

a problem on such systems. We (partially) circumvent these problems by making
use of the fact that the MPI implementation uses domain decomposition and

reduced local address spaces for parallelization. Hence, if the problem is solved

on a large enough number of processors, all integers required can be represented
in 32 bits. The minimum number of processors on which the problem can be

solved successfully depends slightly on the system's representation of signed

integers. Usually, four to eight processors suffice.

Avoiding integer overflow

The NPB version 2.3 MPI implementation of FT evaluates the number of grid

points per processor by computing the total grid size and dividing the result

by the number of processors, i.e. npts = (nx × ny x nz)/nprocs. To void integer
overflow, we do not compute and store the total grid size explicitly, but make use

of the fact that the grid cross-sectional size is large, and that all grid dimensions

as well as the number of processors employed are powers of two: npts = ((nx×

ny) /nprocs) x nz.
Furthermore, the function ipow46, which is used in the initialization of the

solution of FT, may suffer errors if applied unmodified to solve the Class D

problem. The reason is that one of its integer arguments may assume very large
values for numbers of processors that are large with respect to the number of

grid points in the third spatial dimension. In that case, the integer argument
is close to twice the total grid size. We remedy this situation by pre-factoring

the integer argument into a modest power of two (2nx) and a leftover term,

wherever ipow46 is called.

Reducing memory required

Completion of the FT benchmark involves the evolution of the Fourier trans-

form of the discrete solution by multiplying each element with some exponential

e_(_,j,_)*t, where _- is a function of the discrete coordinates (i, j, k) of the grid



point,andt signifies the sequence number of the time step. In NPB, version 2.3,
the exponential was stored in a table for all values of i, j, k, and t that might

occur. This approach minimizes the number of evaluations of transcendental

functions, and the number of branchings required to compute the function v.

However, it comes at the expense of having to store on each processor an ar-

ray of size tma_(nx 2 + ny 2 + nz2)/4, where trn_x is the total number of time

steps in the computation (this particular size follows from the shape of the grid-

dependent portion of the argument of T, see [1, p.24]). Clearly, this approach

is not scalable, and leads to space problems on systems with modest amounts

of memory. We partially solve the problem by only reserving space for, and

precomputing, the term e _(_'j'k). This strategy is still not scalable, but reduces

the memory requirement by a factor of 25 for Class D. We applied the same
method to the smaller problem sizes of FT and found that, on an SGI Origin

3000 with MIPS 1114000 processors, the extra cost for on-the-fly exponentia-

tion of the term e v(i'j'k) was offset by the reduction in memory accesses to the

very large original array tabulating ev(i'J'k)*t; no performance degradation was
observed.

5 Conclusions

A new problem size was defined for all NAS Parallel Benchmarks, except for

the Integer Sort. The new set of problems is collectively called Class D, whose

specification coincides with the release of a new MPI implementation, called

Version 2.4, which is available at:

www. nas. nasa. gov/Research/Software/swinstruct ions. html.

The Class D codes can be run on systems with 32-bitintegersand with MPI

1.0bindings. NAS invitesperformance resultsforallclasses,but especiallyfor

Class D, to be submitted to: npb©nas.nasa.gov.

References

[1] D. Bailey, E. Barscz, J. Barton, D. Browning. R. Carter, L. Dagum, R.
Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Si-

mon, V. Venkatakrishnan, S. Weeratunga. The NAS Parallel Benchmarks.
NAS Technical Report RNR-94-007, NASA Ames Research Center, Moffett

Field, CA, 1994.

[2] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Woo, M.
Yarrow. The NAS Parallel Benchmarks 2.0. NAS Technical Report NAS-

95-020, NASA Ames Research Center, Moffett Field, CA, 1995.

[3] http://www.top5OO.org/



Table 1: Checksum values for FT, Class D

Time step Real part Imaginary part

5

6

7

8

9

10

11
12

13
14

15

16

17

512.2230065252

512.0463975765

511.9865766760

511.9518799488

511.9269088223

511.9082416858
511.8943814638

511.8842385057

511.8769435632
511.8718203448

511.8683569061

511.8661708593

511.8649768950

511.8645605626

511.8647586618
511.8654451572

511.8665212451

511.8534037109

511.7061181082

511.7096364601

511.7373863950

511.7680347632

511.7967875532

511.8225281841

511.8451629348

511.8649119387

511.8820803844

511.8969781011
511.9098918835

511.9210777066

511.9307604484

511.9391362671

511.9463757241

511.9526269238

18

19
2O

21

22

23

24

25

511.8679083821

511.8695433664

511.8713748264

511.8733606701

511.8754661974

511.8776626738

511.8799262314

511.8822370068

511.9580184108

511.9626617538
511.9666538138

511.9700787219

511.9730095953

511.9755100241

511.9776353561

511.9794338060

Table 2: Verification values for BT, Class D

Component Residual norm Error norm
0.2533188551738* 105

0.2346393716980* 104

0.6294554366904* 104

0.5352565376030 * 104

0.3905864038618* 105

0.3100009377557* 103

0.2424086324913* 102

0.7782212022645 * 102

0.6835623860116* 102

0.6065737200368 * 103

Table 3: Verification values for SP, Class D

Component
1

2

3
4

5

Residual norm

0.1044696216887* 10_

0.3204427762578 * 104

0.4648680733032 * 104

0.4238923283697* 104

0.7588412036136 * 104

Error norm

0.5089471423669* 101

0.5323514855894* 10 °

0.1187051008971 * 101

0.1083734951938 * 101

0.1164108338568 * 102



Table4: Verificationvaluesfor LU,ClassD
ComponentI Residualnorm Errornorm

0.3752393004482* 10J0.4868417937025* 10°
0.4696371050071.10_
0.1218114549776* l0s
0.1033801493461*105
0.7142398413817* 105

0.3084128893659* 102
0.9434276905469* 102
0.8230686681928* 102
0.7002620636210* 103




